1. CTPM interface to Host

Figure 1-1 shows how CTPM communicates with host device. 12C interface supported by CSTx16 that is

two-wire serial bus consisting of data line SDA and SCL clock line, used for serial data transferring

between host and slave device.

4 A
CTPM
VDD
[>
SDA
LIE 3 = CST716 ~ scL Host
[>
INT
< RSTN
GND
- J

Figure 1-1 CTPM and Host connection

INT port and RSTN port form the control interface. The INT port controlled by CST716 will send out an
interrupt request signal to the host when there is a valid touch on CTP. The INT port also has another input

function that host can wake up CST716 from the Hibernate mode. Host can send the reset signal to CTPM
via RSTN port to reset the CST716 if needed. The Power Supply voltage of CTPM ranges from 2.7V to
3.6V. For details, please refer to Table 1-1.

Table 1-1 Description for CTPM and Host interface

Port Name Description
VDD CTPM power supply, ranges from 2.7V to 3.6V.
SDA IoC data input and output.
SCL I2C clock input.
The interrupt request signal from CTPM to Host.
INT The wake up signal from host to CTPM, active low and the low pulse width
ranges from 0.1ms to Ims.
RSTN The reset signal from host to CTPM, active low, and the low pulse width should
be more than or equal to 1ms.
GND Power ground.

1.1 I2C Read/Write Interface description

-
—

is important to note|that the SDA and SCL mujst connect with a pull-high|resistor respectively beforg yjou

5) d/write 1oC data = = > =
=~ é O O o a3
~ — 7~ ~ ~ ~ =
— es]

Write N bytes to 12C slave

Slave Addr Data Address[X] Data [X] Data [X+N-1]
SA AAAAAAR RRRRRRRRADDDDDDDDA DDDDDDDDAP
6543210WAl76543210 716 543210 76543210
7 = > >
H
> 7 2 Q3
~ — ~
= t
Set Data Address
Slave Addr Data Address[X]
SA AAAAAAR RRRRRRRA
654321 0WVAT 6543210
2 2% 3 22
% 2~ 7~ ~ 9
'%
Read X bytes from I2C Slave
Slave Addr Data [N] Data [X+N-1]
SAAAAAAAR DDDDDDDDA DDDDDDDDAP
654321 0WA76543210 76543210

1.2 Interrupt/Wake-up signal from CTPM to Host

As for standard CTPM, host needs to use both interrupt signal and I2C ifjterface to get the touch data.

CTPM will output an interrupt request signat to the host when there s a vatid touch. Then host can get the
touch data via [2€+4 i i

evel, and the host

does not need ta rrupt trigger and

interrupt polling.
Touch Start Touch End
INT
12C Tk—DTa PTkeJ—DEta Packet iiata Packet
Data Blan 0 N R ‘ ... Blank
Figupe 1-2 Interru ing mode
As for interrupt poth ode; il al ulle eve ere't id touch point, and

be high level when a touch finished.

Touch Start Touch End

INT

12C Data Packet Data Packet Data Packet
Blank

Data 0 1 e N Blank

Figure 1-3 Interrupt trigger mode

While for interrupt trigger mode, INT signal will be set to low if there is a touch detected. But whenever an
update of valid touch data, CTPM will produce a valid pulse on INT port for INT signal, and host can read
the touch data periodically according to the frequency of this pulse. In this mode, the pulse frequency is the
touch data updating rate.

When CTPM stays in hibernate mode, the INT port will act as a pull-high input port and wait for an
external wake up signal. Host may send out a low pulse to wake up CTPM from the hibernate mode. The
wake-up low pulse width ranges from 0.5 ms to 1 ms, the reason for this is that the INT port will act as an
interrupt request signal output port after wake-up.

1.3 Reset signal from Host to CTPM

Host can send the reset signal via RSTN port to reset. The reset signal should not be set to low while in
normal running mode, but when programming flash, the RSTN port must be connected to GND. The
RSTN port can also be used to active the CTPM in hibernate mode. Note that the reset pulse width

should be more than 1ms.

2. Standard Application circuit of

Table 2-1 is a brief summary of application features. Figure2-1, Figure2-2, demonstrates the typical
application schematic.
Table 2-1 Brief features

IC Type CST716
Operating Voltage(V) 2.6~3.6
Channel 13
Touch points 2
Interface LC
Report rate >50Hz
Package (mm) 3*3 QFN20

2.1 application schematic

100nF

IRQ 26—
SDA 19—
scL Hs—
RST b17—
VDDA 6

[
||I e %
[—H{cMoDo ™\ CMOD1 H5—
nF2 4 SIL SI3R 14 inF
L34S CSTx16 SI2ZR}13 |
44831 QFN20-3%*3 SIIRF12
54 s4L SIOR 11
_ J
RS-
v O >~ 0 O
NN NN NN N
)] I I)
O >~ 0 O 2

3. CTPM Register Mapping

This chapter describes the standard CTPM communication registers in address order for working mode.
The most detailed descriptions of the standard products communication registers are in the register

definitions section of each chapter.
3.1 Working Mode

The CTP is fully functional as a touch screen controller in working mode. The access address to read and
write is just logical address which is not enforced by hardware or firmware. Here is the working mode
register map.

Working Mode Register Map

Address Name Default | pi7 | Bits | Bits | Bit4 | Bi3 | Bitz | Bitl | Bito | 1O
Value Access
0x00 | DEV_MODE 0x00 R
0x01 GEST ID 0x00 | Always 0 R
0x02 | TD STATUS 0x00 [3:0] Number of touch R
- points
[7:6]1st [3:0] 1st Touch
0x03 P1_XH OxFF Event Flag X Position[11:8] R
0x04 P1 XL OxFF | [7:0] 1st Touch X Position R
7:4] 1« Touch ID [3:0] 1sTouch
0x05 | P1_YH OxFF | [7:4] 1stTou Y Position[11:8] R
0x06 P1 YL O0xFF | [7:0] 1stTouch Y Position R
0x07 P1 WEIGHT OxFF | [7:0] 1st Touch Weight R
0x08 P1 MISC OxFF | [7:4] 1stTouch Area ‘ R
[7:6]2nd [3:0]2nd Touch
0x09 P2_XH OxEF Event Flag X Position[11:8] R
0x0A | P2 XL O0xFF | [7:0] 2nd Touch X Position R
7:4] 2ndTouch ID [3:0] 2na Touch
0x0B | P2 YH OxFF | [7:4] Y Position[11:8] R
0x0C | P2 YL OxFF | [7:0]2nd Touch Y Position R
0x0D | P2 WEIGHT O0xFF | [7:0] 2nd Touch Weight R
0xOE | P2 MISC OXFF | [7:4] 2na Touch Area | | R
0xA5 | PWR MODE 0x00 | [7:0] Current power mode which system is in R/W

3.1.1 DEVICE_MODE

Always 0
3.1.2 GEST_ID

Always 0
3.1.3 TD_STATUS

This register is the Touch Data status register.

Address | Bit Address Register Name Description
3:0 Number of touch points [3:0] The detected point number, 1-2 is valid.
0x02
7:4 Reserved

3.1.4 Pn_XH (n:1-2)
This register describes MSB of the X coordinate of the nth touch point and the corresponding event flag.

Address | Bit Address Register Name Description
0x03) 00b: Press Down
N 7:6 Event Flag 0lb: Lift Up
0x09 10b: Contact
11b: Noevent
5:4 Reserved
3:0 Touch X Position [11:8] | MSB of Touch X Position in pixels

3.1.5 Pn_XL (n:1-2)
This register describes LSB of the X coordinate of the nth touch point.

Address | Bit Address Register Name Description
0x04
~ 7:0 Touch X Position [7:0] LSB of the Touch X Position in pixels
0x0A

3.1.6 Pn_YH (n:1-2)
This register describes MSB of the Y coordinate of the nth touch point and corresponding touch ID.

Address | Bit Address Register Name Description

0x05 7.4 Touch ID[3:0] Touch ID of Tpuch Point, this value is 0xOF when
~ the ID is invalid

0x0B 3:0 Touch Y Position [11:8] MSB of Touch Y Position in pixels

3.1.7 Pn_YL (n:1-2)
This register describes LSB of the Y coordinate of the nth touch point.

Address | Bit Address Register Name Description
0x06
~ 7:0 Touch Y Position [7:0] LSB of the Touch Y Position in pixels
0x0C

3.1.8 Pn_WEIGHT (n:1-2)
This register describes weight of the nth touch point.

Address | Bit Address Register Name Description
0x07
~ 7:0 Touch Weight[7:0] Touch pressure value
0x0D

3.1.9 Pn_MISC (n:1-2)

This register describes the miscellaneous information of the nth touch point.

Address | Bit Address Register Name Description
0x08
~ 7:4 Touch Area[3:0] | Touch area value
0x0E

3.1.10 PWR_MODE
Control TP power mode
0x00: active mode

0x03: sleep mode, need pull low reset pin to wake up TP

4. Communication between host and CTPM

4.1 Communication Contents

The data Host received from the CTPM through I2C interface are different depend on the configuration in
Device Mode Register of the CTPM. Please refer to Section 3---CTPM Register Mapping.

4.2 12C Example Code

The code is only for reference, if you want to learn more, please contact our FAE staff.
T T

// 12C write bytes to device.

/I Arguments: ucSlaveAdr - slave address

/ ucSubAdr - sub addres
/l pBuf - pointer of buffer

/l ucBufLen - length of buffer

T T
void i2cBurstWriteBytes(BYTE ucSlaveAdr, BYTE ucSubAdr, BYTE *pBuf, BYTE ucBufLen)
{
BYTE ucDummy; // loop dummy
ucDummy =12C_ACCESS DUMMY _TIME,;
while(ucDummy--)
{
if (12c_AccessStart(ucSlaveAdr, 2C_WRITE) ==FALSE)
continue;
if (i2¢_SendByte(ucSubAdr) == [12C_NON_ACKNOWLEDGE) // check non-acknowledge
continue;
while(ucBufLen--) // loop of writting data
{
i2¢_SendByte(*pBuf); // send byte
pBuf++; // next byte pointer
} // while
break; }
// while
i2¢_Stop();

T
// 12C read bytes from device.
//

// Arguments: ucSlaveAdr - slave address

/ ucSubAdr - sub addres
/ pBuf - pointer of buffer
/ ucBufLen - length of buffer

T T
void i2cBurstReadBytes(BYTE ucSlaveAdr, BYTE ucSubAdr, BYTE *pBuf, BYTE ucBufLen)

{
BYTE ucDummy; // loop dummy

ucDummy =12C_ACCESS DUMMY _TIME;
while(ucDummy--)
{
if (12c_AccessStart(ucSlaveAdr, 2C_WRITE) == FALSE)
continue;
if (i2¢_SendByte(ucSubAdr) == I12C_NON_ACKNOWLEDGE) // check non-acknowledge
continue;
if (i2c_AccessStart(ucSlaveAdr, 2C_READ)==FALSE)

continue;

while(ucBufLen--) // loop to burstread
{
*pBuf =i2c_ReceiveByte(ucBufLen); // receive byte
pBuf++; // next byte pointer
} // while
break;
} // while
i2¢_Stop();

e

// 12C read current bytes from device.

//

// Arguments: ucSlaveAdr - slave address

/l pBuf - pointer of buffer

/l ucBufLen - length of buffer
T T

void i2cBurstCurrentBytes(BYTE ucSlaveAdr, BYTE *pBuf, BYTE ucBufLen)

{
BYTE ucDummy; // loop dummy

ucDummy =12C_ACCESS DUMMY _TIME;
while(ucDummy--)
{
if (12c_AccessStart(ucSlaveAdr, 2C_READ)==FALSE)
continue;
while(ucBufLen--) // loop to burst read
{
*pBuf =12c_ReceiveByte(ucBufLen); // receive byte
pBuf++; // next byte pointer
} // while
break;
} // while
i2¢_Stop();

